Close
The page header's logo
About
FAQ
Home
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Bone mineral density is associated with carotid atherosclerosis in healthy postmenopausal women: a longitudinal analysis of randomized clinical trial data
(USC Thesis Other) 

Bone mineral density is associated with carotid atherosclerosis in healthy postmenopausal women: a longitudinal analysis of randomized clinical trial data

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content
 
Bone
 Mineral
 Density
 is
 Associated
 with
 Carotid
 Atherosclerosis
 in
 Healthy
 
Postmenopausal
 Women :A
 Longitudinal
 Analysis
 of
 Randomized
 Clinical
 
Trial
 Data
 

 

 
By
 
 
Jiaonan
 Li
 

 

 
Thesis
 
 Submitted
 in
 Partial
 Fulfillment
 
of
 the
 Requirements
 for
 the
 Degree
 of
 
 

 Master
 of
 Science
 in
 Biostatistics
 
 

 

 
University
 of
 Southern
 California
 
 
December
 2015
 

 

  I
 
ABSTRACT
 

 
Background
 and
 purpose:
 Atherosclerosis
 and
 osteoporosis
 are
 major
 causes
 of
 
morbidity
 and
 mortality
 in
 postmenopausal
 women.
 Our
 study
 aimed
 to
 analyze
 the
 
association
 between
 progression
 of
 carotid
 artery
 intima-­‐media
 thickness
 (CIMT)
 
and
 bone
 mineral
 density
 (BMD),
 providing
 more
 evidence
 for
 the
 relation
 between
 
osteoporosis
 and
 subclinical
 atherosclerosis
 in
 postmenopausal
 women.
 
 
 
Methods:
 In
 this
 longitudinal
 analysis,
 349
 postmenopausal
 women
 were
 followed
 
for
 3
 years,
 and
 had
 an
 average
 6
 CIMT
 measurements.
 BMD
 had
 an
 average
 3
 
measurements
 using
 DEXA;
 we
 used
 the
 baseline
 BMD
 measurements
 from
 the
 total
 
hip
 and
 lumbar
 spine.
 We
 used
 a
 linear
 mixed-­‐effects
 model
 to
 analyze
 the
 
association
 between
 CIMT
 progression
 and
 baseline
 BMD
 and
 other
 clinical
 
variables.
 
 
Results:
 Longitudinally,
 both
 total
 hip
 and
 lumbar
 spine
 BMD
 were
 significantly
 
inversely
 associated
 with
 CIMT
 progression
 (P=0.01,
 P=0.03).
 The
 mean
 CIMT
 rate
 
was
 0.002
 mm/year
 (95%
 CI:
 -­‐0.020,
 -­‐0.003)
 lower
 per
 0.137g/cm
2

 total
 hip
 BMD.
 
The
 mean
 CIMT
 rate
 was
 0.001
 mm/year
 (95%
 CI:
 -­‐0.016,
 -­‐0.001)
 lower
 per
 
0.122g/cm
2

 mean
 lumbar
 spine
 BMD.
 After
 adjusting
 for
 age,
 the
 longitudinal
 
association
 between
 total
 hip
 BMD
 and
 CIMT
 did
 not
 change.
 
Conclusions:
 Low
 BMD
 in
 the
 total
 hip
 and
 lumbar
 spine
 may
 represent
 a
 marker
 of
 
both
 osteoporosis
 and
 atherosclerosis
 progression
 for
 healthy
 postmenopausal
 

  II
 
women.
 Postmenopausal
 women
 at
 higher
 risk
 for
 osteoporosis
 should
 also
 have
 
concern
 about
 the
 risk
 of
 atherosclerosis.
 These
 results
 have
 clinical
 and
 public
 
health
 implications
 with
 regard
 to
 co-­‐occurrence
 of
 osteoporosis
 and
 
atherosclerosis
 for
 postmenopausal
 women
 in
 the
 United
 States.
 

   
 

  III
 
DEDICATION
 
I
 dedicate
 my
 thesis
 to
 my
 big
 family.
 A
 special
 feeling
 of
 gratitude
 to
 my
 loving
 
parents,
 Weiguo
 Li
 and
 Yan
 Wen,
 who
 support
 me
 to
 finish
 my
 graduate
 school
 and
 
encourage
 me
 to
 pursue
 the
 things
 I
 love.
 
I
  also
 dedicate
 my
 thesis
 to
 my
 friends
 who
 have
 supported
 me
 throughout
 the
 
process,
 especially
 Wendy
 Cai
 for
 being
 very
 patient
 to
 answer
 my
 questions.
 

   
 

  IV
 
ACKNOWLEDGEMENT
 
I
 wish
 to
 thank
 all
 my
 committee
 members
 who
 were
 generous
 with
 their
 expertise
 
and
 precious
 time.
 
 I
 wish
 to
 thank
 my
 committee
 chair
 Wendy
 Mack,
 who
 helps
 me
 
revise
 my
 thesis
 many
 times
 with
 great
 patient.
 Without
 her
 help,
 I
 could
 not
 finish
 
my
 thesis
 timely.
 
I
 wish
 to
 thank
 my
 committee
 member
 Dr.
 Roksana
 Karim,
 who
 helping
 me
 through
 
this
 program.
 Without
 her
 guidance
 and
 design,
 the
 results
 of
 this
 research
 could
 not
 
have
 been
 found.
 
I
 wish
 to
 thank
 Dr.
 Howard
 N
 Hodis,
 who
 provide
 the
 clinical
 trial
 dataset.
 
 
Finally,
 I
 wish
 to
 thank
 all
 the
 staffs
 in
 preventive
 medicine
 department
 for
 their
 
excitement
 to
 provide
 feedback
 made
 the
 completion
 of
 thesis
 an
 enjoyable
 
experience.
 

 

   
 

  V
 
TABLE
 OF
 CONTENTS
 
ABSTRACT
 ......................................................................................................................................................
  I
 
DEDICATION
 ...............................................................................................................................................
 III
 
ACKNOWLEDGEMENT
 ...........................................................................................................................
  IV
 
TABLE
 OF
 CONTENT
 ................................................................................................................................
 V
 
LIST
 OF
 TABLES
 ......................................................................................................................................
 VII
 
INTRODUCTION
 ..........................................................................................................................................
 1
 
METHODS
 ......................................................................................................................................................
 4
 

   
  Study
 Population
 ........................................................................................................................
 4
 

   
  Assessment
 of
 Bone
 Mineral
 Density
 ................................................................................
 4
 

   
  Assessment
 of
 Atherosclerosis
 Progression
 ..................................................................
 5
 

   
  Assessment
 of
 Clinical
 Variables
 .........................................................................................
 6
 

   
  Statistical
 Analysis
 ....................................................................................................................
 6
 
RESULTS
 ......................................................................................................................................................
 10
 

   
  Clinical
 Variables,
 CIMT
 and
 BMD
 in
 Postmenopausal
 Women
 .........................
 10
 

   
  Cross-­‐sectional
 Association
 between
 BMD
 and
 Clinical
 Variables
 ...................
 12
 

   
  Univariate
 Association
 between
 CIMT
 and
 Clinical
 Variables
 and
 BMD
 ........
 15
 

   
  Multivariable
 Association
 between
 Total
 Hip
 BMD
 and
 CIMT
 ............................
 17
 

   
  Effect
 Modification
 by
 BMI
 and
 Smoking
 .....................................................................
 19
 
DISCUSSION
 ...............................................................................................................................................
 20
 

   
  Associations
 of
 BMD
 with
 Clinical
 Variables
 ..............................................................
 20
 

  VI
 

   
  Association
 of
 CIMT
 with
 Clinival
 Variables
 ...............................................................
 21
 

   
  Association
 of
 CIMT
 Rate
 and
 Total
 Hip
 BMD
 ............................................................
 21
 

   
  Biological
 Link
 and
 Possible
 Pathophysiological
 Mechanisms
 ...........................
 22
 
REFERENCES
 .............................................................................................................................................
 25
 

   
 

  VII
 
LIST
 OF
 TABLES
 

 
Table
 1.
 Baseline
 Characteristics
 of
 Study
 Population
 .............................................................
 11
 
Table
 2.
 Baseline
 Cross-­‐sectional
 Association
 
 
between
 BMD
 and
 Clinical
 Variables
 ............................................................................
   
 14
 
Table
 3.
 Univeriate
 Mixed
 Effects
 Associations
 between
 
 
CIMT
 and
 Clinical
 Variables
 and
 BMD
 ...........................................................................
 16
 
Table
 4.
 Mixed
 Effects
 Model
 of
 CIMT
 and
 
 
Total
 Hip
 BMD
 with
 Age
 Adjustment
 .............................................................................
 18
 

 

  1
 
INTRODUCTION
 
Atherosclerosis
 is
 the
 primary
 cause
 of
 heart
 disease
 and
 stroke.
 In
 Westernized
 
societies,
 it
 is
 the
 underlying
 cause
 of
 about
 half
 of
 all
 deaths
 for
 postmenopausal
 
women
 [1].
 Atherosclerosis
 is
 an
 inevitable
 degenerative
 consequence
 of
 aging
 [2].
 
Epidemiological
 studies
 have
 revealed
 several
 additional
 important
 environmental
 
and
 genetic
 risk
 factors
 associated
 with
 atherosclerosis,
 such
 as
 obesity,
 smoking
 
and
 metabolic
 syndrome
 [1].
 
 
Osteoporosis
 is
 a
 metabolic
 process
 that
 weakens
 bone,
 increasing
 the
 risk
 for
 
fractures
  [3].
  In
  the
  United
  States,
  30%
  of
  postmenopausal
  women
  have
 
osteoporosis
 [4].
 Women
 are
 at
 greater
 risk
 for
 osteoporosis
 than
 men,
 and
 there
 is
 
a
  direct
  relationship
  between
  the
  reduction
  of
  endogenous
  estrogen
  levels
  at
 
menopause
 and
 the
 development
 of
 osteoporosis
 [3].
 Epidemiological
 studies
 have
 
revealed
 important
 risk
 factors
 for
 osteoporosis,
 including
 older
 age,
 ethnicity
 (in
 
particular
 non-­‐Hispanic
 Whites
 and
 Asians
 are
 at
 higher
 risk),
 lower
 body
 weight,
 
current
 smoking
 and
 hypertension.
 
 
More
 than
 40
 million
 American
 women
 are
 currently
 postmenopausal
 and
 as
 
the
  United
  States
  population
  ages,
  the
  number
  of
  women
  entering
  menopause
 
steadily
 increases
 by
 >1
 million
 American
 women
 per
 year
 [5].

 
Atherosclerosis
 and
 
osteoporosis
  are
  major
  causes
  of
  morbidity
  and
  mortality
  in
  postmenopausal
 
women.
 Both
 osteoporosis
 and
 atherosclerosis,
 including
 vascular
 calcification
 have
 
largely
  been
  attributed
  to
  the
  aging
  process
  [6].
  In
  addition
  to
  menopause
  and
 

  2
 
advanced
 age,
 other
 risk
 factors
 for
 vascular
 disease
 such
 as
 dyslipidemia,
 oxidative
 
stress,
 inflammation,
 hypertension
 and
 diabetes
 have
 also
 been
 related
 to
 lower
 
bone
 mineral
 density
 [7].
 Therefore,
 the
 interrelation
 between
 the
 two
 age-­‐related
 
processes
 of
 atherosclerosis
 and
 osteoporosis
 requires
 inquiry.
 
Carotid
 artery
 intima-­‐media
 thickness
 (CIMT),
 measured
 by
 high-­‐resolution
 B-­‐
mode
 ultrasound,
 is
 a
 commonly
 accepted
 measure
 of
 subclinical
 atherosclerosis
 
and
 is
 a
 biomarker
 of
 cardiovascular
 disease
 risk.
 CIMT
 is
 a
 suitable
 measure
 for
 
community-­‐
  and
  population-­‐based
  studies
  conducted
  among
  persons
  without
 
clinically-­‐defined
 cardiovascular
 disease.
 Increased
 CIMT
 is
 significantly
 associated
 
with
 atherosclerosis
 [8].
 Bone
 mineral
 density
 (BMD),
 which
 is
 measured
 by
 dual-­‐
energy
 X-­‐ray
 absorptiometry
 (DEXA),
 is
 widely
 used
 for
 diagnosing
 osteoporosis
 [9].
 
Several
  cross-­‐sectional
  studies
  have
  evaluated
  carotid
 artery
  atherosclerosis
 and
 
demonstrated
 a
 positive
 association
 with
 osteoporosis
 among
 elderly
 women
 [8.10].

 
One
 study
 reported
 that
 the
 progression
 of
 vascular
 calcification
 (in
 the
 abdominal
 
aorta)
 was
 associated
 with
 increased
 bone
 loss
 (metacarpal)
 among
 women
 aged
 45
 
to
 57
 years
 [1].
 However,
 currently
 there
 is
 no
 longitudinal
 research
 with
 sufficient
 
sample
 size,
 investigating
 the
 association
 of
 BMD
 with
 atherosclerosis
 progression
 
in
 postmenopausal
 women.
 
In
  the
  present
  community-­‐based
  longitudinal
  study,
  we
  examined
  the
 
association
 between
 progression
 of
 CIMT,
 a
 measure
 of
 sub-­‐clinical
 atherosclerosis,
 
and
 total
 hip
 and
 lumbar
 spine
 BMD
 among
 349
 postmenopausal
 women.
 We
 also
 

  3
 
considered
 the
 effect
 of
 several
 potential
 confounding
 factors
 on
 this
 association.
 

   
 

  4
 
METHODS
 
Study
 Population
 
The
 Women’s
 Isoflavone
 Soy
 Health
 (WISH)
 trial
 was
 conducted
 from
 April
 12,
 
2004
  to
  March
  19,
  2009.
  WISH
  was
  a
  randomized,
  double-­‐blinded,
  placebo-­‐
controlled
  trial.
  Participants
  were
  postmenopausal
  women
  without
  vaginal
 
bleeding
  >1
  year
  and
  serum
  estradiol
  <20
  pg/mL
  [5].
  Detailed
  inclusion
  and
 
exclusion
 criteria
 and
 other
 aspects
 of
 this
 trial
 have
 been
 previously
 published
 [5].
 
The
  primary
  WISH
  trial
  outcome
  was
  carotid
  artery
  ultrasonographic
 
measurement
 of
 CIMT
 to
 assess
 progression
 of
 sub-­‐clinical
 atherosclerosis.
 Clinic
 
visits
 to
 assess
 CIMT
 occurred
 every
 6
 months
 and
 lasted
 for
 2.5
 years.
 BMD
 was
 a
 
secondary
 trial
 outcome.
  Clinic
  visits
 to
 assess
 BMD
 occurred
 every
 year
  for
  2.5
 
years.
 Sample
 size
 based
 on
 CIMT
 progression
 required
 350
 participants
 to
 detect
 a
 
difference
 in
 the
 rate
 of
 CIMT
 progression
 of
 12.4μm/year
 at
 a
 0.05
 significance
 (2-­‐
sided)
  with
  90%
  power
  [5].
  The
  350
  women
  were
  recruited
  from
  the
  general
 
population
  of
  the
  Greater
  Los
  Angeles
  area
  predominantly
  through
  media
 
advertisement.
 A
 total
 of
 269
 (77%)
 postmenopausal
 women
 had
 at
 least
 6
 CIMT
 
measures;
 25(7%)
 participants
 had
 baseline
 CIMT
 only.
 
 
Assessment
 of
 Bone
 Mineral
 Density
 
 
Total
 hip
 and
 lumbar
 spine
 BMD
 were
 measured
 by
 DXA
 [5].
 DXA
 is
 a
 fast
 and
 
low
 dose
 radiation
 method
 that
 uses
 two
 different
 X-­‐ray
 beams
 to
 estimate
 bone
 
density;
 higher
 bone
 density
 allows
 less
 of
 the
 X-­‐ray
 beam
 to
 pass
 through
 the
 bone.
 

  5
 
The
 amount
 of
 each
 X-­‐ray
 beam
 that
 is
 blocked
 by
 bone
 and
 soft
 tissue
 are
 compared
 
with
 each
 other.
 DXA
 can
 measure
 as
 little
 as
 2%
 of
 bone
 loss
 per
 year
 [3].
 The
 unit
 
of
 BMD
 is
 expressed
 as
 g/cm
2
.
 
348
  participants
  had
  baseline
  total
  hip
  BMD
  measurements
  and
  346
 
participants
 had
 baseline
 lumbar
 spine
 BMD
 measurements.
 The
 number
 of
 BMD
 
measurements
 for
 each
 subject
 ranged
 from
 1
 to
 3
 and
 the
 median
 number
 of
 BMD
 
measurements
 was
 3(80%).
 The
 scheduled
 times
 for
 BMD
 measurement
 is
 baseline,
 
12
  months
  and
  30
  months.
  In
  this
  study,
  we
  only
  used
  the
  baseline
  BMD
 
measurement.
 
Assessment
 of
 Atherosclerosis
 Progression
 
Carotid
 artery
 ultrasound
 is
 noninvasive
 and
 is
 therefore
 suitable
 for
 studies
 in
 
subjects
  who
  are
  free
  from
  symptomatic
  cardiovascular
  disease
  [11].
  In
  WISH,
 
ultrasound
 imaging
 of
 far
 wall
 CIMT
 was
 conducted
 using
 standardized
 procedures
 
and
 technology
 specifically
 developed
 for
 longitudinal
 measurements
 (24-­‐27).
 The
 
jugular
 vein
 and
 carotid
 artery
 were
 imaged
 longitudinally
 with
 the
 former
 stacked
 
above
  the
  latter.
  All
  images
  contained
  internal
  anatomical
  landmarks
  for
 
reproducing
 probe
 angulation.
 The
 baseline
 image
 for
 each
 individual
 was
 used
 as
 
an
 online
 guide
 for
 follow-­‐up
 examinations
 on
 a
 split-­‐screen
 system
 designed
 for
 
repeat
  image
  acquisition
  for
  longitudinal
  studies
  [5].
 CIMT
  was
  the
  average
  of
 
approximately
 70
 to
 100
 individual
 measurements
 between
 the
 intima-­‐lumen
 and
 
media-­‐adventitia
 interfaces
 along
 a
 1-­‐cm
 length
 just
 proximal
 to
 the
 carotid
 artery
 

  6
 
bulb
  at
  the
  same
  point
  of
  the
  cardiac
  cycle
  [12].
  This
  method
  standardizes
  the
 
location
 and
 the
 distance
 over
 which
 CIMT
 is
 measured,
 ensuring
 comparability
 
within
  and
  across
  participants
  (26,27).
  The
  coefficient
  of
  variation
  of
  the
  350
 
repeated
  baseline
  CIMT
  measurement
  was
  <1%
  [5].
  A
  total
  of
  269
  (77%)
 
postmenopausal
 women
 had
 at
 least
 6
 CIMT
 measures;
 25(7%)
 participants
 had
 
baseline
 CIMT
 only.
 
 
Assessment
 of
 Clinical
 Variables
 
Height
 and
 weight
 were
 measured
 at
 the
 clinic
 screening.
 Body
 mass
 index
 
(BMI)
 was
 calculated
 as
 weight
 (kg)
 /height
2

 (m
2
)
 formula.
 Smoking
 history
 and
 
hormone
  treatment
  (HT)
  history,
  which
  are
  both
  associated
  with
  BMD,
  were
 
assessed
 by
 a
 structured
 questionnaire
 at
 baseline.
 
Statistical
 Analysis
 
 
The
  current
  analysis
  included
 349
  participants
  who
  had
  at
  least
  one
  CIMT
 
measurement,
 and
 total
 hip
 BMD
 and
 lumbar
 spine
 BMD
 measurement
 at
 baseline.
 
We
 only
 used
 baseline
 BMD
 measurement
 data
 in
 the
 analysis.
 The
 baseline
 CIMT
 
measurement
  contributed
  to
  estimation
  and
  testing
  of
  the
  cross-­‐sectional
 
association
 of
 baseline
 CIMT
 and
 BMD.
 The
 follow-­‐up
 measurements
 contributed
 to
 
estimation
 and
 testing
 of
 the
 association
 between
 BMD
 and
 CIMT
 change
 rate
 (CIMT
 
progression).
 
 
Age
 was
 categorized
 into
 5
 groups:
 ≤55
 years
 old,
 55-­‐59
 years
 old,
 60-­‐64
 years
 
old,
 65-­‐69
 years
 old
 and
 70+
 years
 old.
 Smoking
 was
 categorized
 as
 current,
 former
 

  7
 
and
 never
 smokers.
 BMI
 was
 categorized
 by
 the
 Center
 for
 Disease
 Control
 (CDC)
 
classification
 scheme:
 <18.5
 kg/m
2
=underweight,
 18.5-­‐24.9
 kg/m
2

 =
 ideal
 weight,
 
25.0-­‐29.9
 kg/m
2

 =
 overweight,
 ≥30
 kg/m
2

 =obese.
 Ethnicity
 was
 categorized
 into
 
five
 groups:
 White
 (non-­‐Hispanic),
 Black
 (non-­‐Hispanic),
 Hispanic,
 Asian
 and
 other.
 
Education
 was
 categorized
 into
 high
 school
 or
 below,
 college
 and
 bachelor’s
 degree
 
or
 above.
 
 
BMI,
 age
 and
 race
 are
 commonly
 considered
 risk
 factors
 for
 both
 atherosclerosis
 
and
 osteoporosis
 of
 postmenopausal
 women
 [3,4].
 To
 identify
 possible
 confounders
 
of
 the
 association
 between
 CIMT
 and
 BMD,
 we
 analyzed
 the
 univariate
 associations
 
between
 baseline
 BMD
 and
 age,
 race,
 BMI,
 past
 use
 of
 hormone
 therapy
 and
 smoking
 
status
 by
 use
 of
 linear
 regression,
 with
 BMD
 (total
 hip
 and
 lumbar
 spine)
 as
 the
 
dependent
 variable.
 We
 centered
 total
 hip
 BMD
 on
 the
 baseline
 mean
 (0.937)
 and
 
centered
 lumbar
 spine
 BMD
 on
 the
 baseline
 mean
 (0.898)
 to
 change
 the
 value
 of
 the
 
intercept.
 After
 setting
 up
 linear
 regression
 models,
 we
 examined
 four
 assumptions
 
for
  linear
  regression
  by
  checking
  the
  residual
  of
  the
  model:
  1)
  The
  linearity
 
assumption
 is
 satisfied
 since
 the
 residuals
 plotted
 against
 BMD
 showed
 a
 flat
 scatter
 
around
 the
 zero
 line;
 2)
 The
 independence
 assumption
 is
 satisfied
 since
 subjects
 in
 
Wish
 were
 not
 correlated.
 3)
 Normality
 assumption
 is
 satisfied
 since
 the
 sample
 size
 
is
 large
 and
 both
 mean
 and
 skewness
 of
 residuals
 are
 near
 to
 0
 and
 the
 distribution
 
of
 the
 residuals
 is
 bell
 shaped;
 and
 4)
 Equal
 variance
 is
 satisfied
 since
 the
 residuals
 
have
 common
 variance
 across
 the
 range
 of
 X-­‐values.
 

  8
 
The
  associations
  between
  CIMT
  rate
  and
  clinical
  variables
  (including
  age,
 
ethnicity,
  BMI,
  education,
  smoking
  and
  hormone
  therapy)
  were
  analyzed
  by
 
univariate
  linear
  mixed-­‐effect
  models,
  with
  random
  intercept
  and
  time.
  A
  linear
 
mixed-­‐effects
 model
 with
 random
 time
 and
 intercept
 was
 also
 used
 to
 assess
 the
 
correlation
 between
 CIMT
 change
 rates
 and
 baseline
 BMD
 (total
 hip
 and
 lumber
 
spine
 separately),
 using
 an
 unstructured
 correlation
 matrix
 to
 model
 the
 repeatedly
 
measured
 CIMT
 dependent
 variable.
 CIMT
 measured
 over
 the
 trial
 was
 treated
 as
 
the
  dependent
  variable.
  In
  the
  mixed-­‐effects
  model,
  the
  primary
  independent
 
variable
 of
 interest
 was
 baseline
 BMD;
 additional
 variables
 included
 follow-­‐up
 time
 
(measured
 as
 years
 since
 randomization,
 or
 first
 CIMT
 measurement)
 to
 model
 the
 
longitudinal
  change
  in
  CIMT,
  and
  age
  as
  an
  adjusting
  variable.
  Since
  age
  was
 
correlated
  with
  both
  CIMT
  and
  BMD,
  we
  determined
  whether
  BMD
  and
  CIMT
 
progression
 rate
 were
 associated
 with
 and
 without
 age
 in
 the
 model.
 Other
 clinical
 
variables,
 such
 as
 BMI,
 smoking
 status
 and
 hormone
 therapy,
 were
 not
 correlated
 
with
  both
  CIMT
  and
  BMD;
  these
  variables
  were
  therefore
  not
  considered
 
confounders.
 The
 regression
 coefficient
 for
 BMD
 evaluated
 the
 cross-­‐sectional
 effect
 
between
  BMD
  and
  CIMT.
  The
  BMD
  and
  follow-­‐up
  time
  interaction
  coefficient
 
estimated
 the
 effect
 of
 BMD
 on
 the
 annual
 CIMT
 progression
 rate.
 In
 subsequent
 
models,
  we
  added
  an
  interaction
  term
  between
  BMD
  and
  BMI
  categories,
  and
 
between
 BMD
 and
 smoking
 status
  in
  the
 mixed-­‐effect
 model
 to
 test
 whether
 the
 
association
  between
  CIMT
  and
  BMD
  differed
  by
  smoking
  status
  or
  by
  BMI
 

  9
 
categories.
  25
  participants
  had
  baseline
  CIMT
  measurements
  only.
  These
 
participants
  were
  included
  in
  the
  analyses,
  contributing
  information
  on
  cross-­‐
sectional
 but
 not
 longitudinal
 associations
 of
 BMD
 with
 CIMT.
 
 
Statistical
  analysis
  used
  SAS
  9.3
  software
  (SAS,
  Inc,
  Cary,
  NC);
  statistical
 
significance
 testing
 was
 conducted
 at
 a
 2-­‐tailed
 0.05
 significance
 level.
 

   
 

  10
 
RESULTS
 
Clinical
 Variables,
 CIMT
 and
 BMD
 in
 Postmenopausal
 Women
 
Table
 1
 shows
 the
 characteristics
 of
 349
 postmenopausal
 women
 randomized
 
into
 the
 WISH
 trial
 who
 were
 included
 in
 the
 present
 analysis.
 The
 mean
 (SD)
 age
 of
 
participants
 was
 61(7)
 years.
 The
 majority
 (64%)
 of
 the
 study
 population
 was
 White
 
(non-­‐Hispanic).
 Of
 the
 349
 participants,
 60%
 had
 a
 bachelor’s
 degree
 or
 above
 
education
 level,
 59%
 were
 never
 smokers
 and
 70%
 had
 hormone
 therapy
 before
 the
 
trial.
 The
 mean
 (SD)
 BMI
 was
 26.6
 (5.2)
 kg/m
2
.
 The
 majority
 (57%)
 of
 the
 study
 
population
 were
 overweight
 or
 obese.
 The
 mean
 baseline
 CIMT
 was
 0.811
 (0.100)
 
mm.
 The
 mean
 baseline
 total
 hip
 BMD
 was
 0.937
 (0.137)
 g/cm
2

 and
 the
 mean
 
baseline
 lumbar
 spine
 BMD
 was
 0.898
 (0.122)
 g/cm
2
.
 

  11
 
Table1.
 Baseline
 Characteristics
 of
 Study
 Population
 (n=349)
 
Variables
 

 
Age,
 years
  61
 (7)
1
 
Age
 group
 

 
≤  55
  67
 (19)
1
 
55-­‐59
  88
 (25)
1
 
60-­‐64
  88
 (25)
1
 
65-­‐69
  67
 (19)
1
 
70+
  39
 (12)
1
 
Ethnicity
 

 
White
 (non-­‐Hispanic)
  223
 (64)
2
 
Black
 (non-­‐Hispanic)
  20
 (6)
2
 
Hispanic
  55
 (15)
2
 
Asian
  38
 (11)
2
 
Other
  13
 (4)
2
 
Education
 

 
High
 school
 or
 below
  19
 (5)
2
 
College
  122
 (35)
2
 
Bachelor’s
 degree
 or
 above
  208
 (60)
2
 
Smoking
 history
 

 
Current
 
  8
 (2)
2
 
Former
  135
 (39)
2
 
Never
 smoked
  206
 (59)
2
 
Body
 mass
 index,
 kg/m
2

  26.6
 (5.2)
1
 
BMI
 group
 

 
<
 18.5
 (underweight)
  5
 (2)
1
 
18.5-­‐-­‐24.9
 (ideal
 weight)
  143
 (41)
1
 
25.0-­‐-­‐29.9
 (overweight)
  116
 (33)
1
 
30.0
 and
 above
 (obese)
  85
 (24)
1
 
Past
 use
 of
 hormone
 therapy
 

 
Yes
  245
 (70)
2
 
No
  104
 (30)
2
 
CIMT,
 mm
  0.811(0.100)
1
 
Total
 hip
 BMD,
 g/cm
2

  0.937
 (0.137)
1,3
 
Lumbar
 Spine
 BMD,
 g/cm
2

  0.898
 (0.122)
1,3
 
1. Mean
 (SD)
 for
 continuous
 variables
 
 
2. Number
 (%)
 for
 categorical
 variables.
 
3. Total
 hip
 BMD
 measurement
 (n=348);
 Lumber
 spine
 BMD
 measurement
 (n=346).
 

 

  12
 
Cross-­‐sectional
 Association
 Between
 BMD
 and
 Clinical
 Variables
 
Table
 2
 shows
 the
 cross-­‐sectional
 associations
 between
 baseline
 BMD
 (total
 hip
 
and
 lumbar
 spine)
 with
 clinical
 variables.
 There
 was
 a
 significantly
 negative
 linear
 
trend
 between
 mean
 total
 hip
 BMD
 and
 age
 (P<0.0001).
 Mean
 total
 hip
 BMD
 in
 
women
 ≥
 70
 years
 old
 was
 lower
 than
 women
 <
 age
 55
 (P<0.0001).
 Mean
 total
 hip
 
BMD
 significantly
 differed
 among
 racial
 groups
 (P<0.0001).
 Black
 (non-­‐Hispanic)
 
participants
 had
 higher
 mean
 total
 hip
 BMD
 than
 the
 White
 participants
 (P<0.0001).
 
Hispanic
 participants
 had
 a
 marginally
 significantly
 higher
 mean
 total
 hip
 BMD
 than
 
White
 participants
 (P=0.054).
 Mean
 total
 hip
 BMD
 in
 Asian
 participants
 was
 
significantly
 lower
 than
 White
 participants
 (P<0.0001).
 Mean
 total
 hip
 BMD
 was
 
significantly
 positively
 associated
 with
 BMI
 (P<0.0001).
 Mean
 total
 hip
 BMD
 
significantly
 differed
 among
 the
 three
 education
 groups
 (P<0.0001).
 Mean
 total
 hip
 
BMD
 in
 the
 bachelor’s
 degree
 or
 above
 education
 group
 was
 significantly
 lower
 than
 
in
 women
 who
 had
 high
 school
 or
 below
 education
 (P=0.02).
 Mean
 total
 hip
 BMD
 
significantly
 differed
 among
 the
 three
 smoking
 status
 groups
 (P<0.05).
 Mean
 total
 
hip
 BMD
 in
 current
 smokers
 was
 higher
 than
 in
 never
 smoker
 (P=0.01).
 
In
 contrast
 to
 total
 hip
 BMD,
 age
 was
 not
 significantly
 associated
 with
 lumbar
 
spine
 BMD
 (P>0.05).
 Mean
 lumbar
 spine
 BMD
 differed
 among
 racial
 groups
 
(P<0.0001).
 Compared
 with
 White
 participants,
 Black
 (non-­‐Hispanic)
 participants
 
had
 a
 significantly
 higher
 mean
 lumbar
 spine
 BMD
 (P<0.0001);
 Hispanic
 
participants
 had
 a
 significantly
 lower
 mean
 lumber
 spine
 BMD
 (P<0.01)
 and
 Asian
 

  13
 
participants
 had
 a
 significantly
 lower
 mean
 lumbar
 spine
 BMD
 (P<0.0001)
 than
 
White
 participants.
 Lumbar
 spine
 BMD
 was
 significantly
 positively
 associated
 with
 
BMI
 (P<0.0001).
 Mean
 lumbar
 spine
 BMD
 significantly
 differed
 among
 the
 three
 
smoking
 groups
 (P<0.0001).
 Mean
 lumbar
 spine
 BMD
 in
 former
 smokers
 was
 
significantly
 higher
 than
 never
 smokers
 (P<0.0001).
 Postmenopausal
 women
 who
 
had
 used
 hormone
 therapy
 had
 a
 higher
 mean
 lumbar
 spine
 BMD
 than
 women
 who
 
did
 not
 use
 hormone
 therapy
 (P<0.01).
 
 

 

  14
 
Table
 2.
 Baseline
 Cross-­‐sectional
 Association
 between
 BMD
1

 and
 Clinical
 Variables
 
 

 
Total
 Hip
 BMD
 (n=348)
2
 
Lumbar
 Spine
 BMD
 (n=346)
3
 
Variable
  Coefficient
  95%CI
  P
  Coefficient
  95%CI
  P
 
Age
 group,
 years
 

   
 
<0.0001
 

   
 
0.11
 
<55
  Reference
 

   
 
Reference
 

   
 
55-­‐59
  -­‐0.009
  (-­‐0.025,
 0.007)
 

 
0.014
  (-­‐0.004,
 0.032)
 

 
60-­‐64
  -­‐0.001
  (-­‐0.016,
 0.016)
 

 
0.009
  (-­‐0.010,
 0.027)
 

 
65-­‐69
  -­‐0.009
  (-­‐0.027,
 0.008)
 

 
-­‐0.001
  (-­‐0.020,
 0.018)
 

 
70+
  -­‐0.057
  (-­‐0.077,
 -­‐0.036)
 

 
0.026
  (0.002,
 0.049)
 

 
Trend
 

   
 
<0.0001
 

   
 
0.48
 
Ethnicity
 

   
 
<0.0001
 

   
 
<0.0001
 
White
 (non-­‐Hispanic)
 
Reference
 

   
 
Reference
 

 

 
Black
 (non-­‐Hispanic)
 
0.101
  (0.078,
 0.124)
 

 
0.077
  (0.052,
 0.103)
 

 
Hispanic
 
0.014
  (-­‐0.001,
 0.029)
 

 
-­‐0.027
  (-­‐0.044,
 -­‐0.010)
 

 
Asian
 
-­‐0.044
  (-­‐0.061,
 -­‐0.028)
 

 
-­‐0.050
  (-­‐0.068,
 -­‐0.031)
 

 
Other
 
0.001
  (-­‐0.027,
 0.028)
 

 
-­‐0.030
  (-­‐0.061,
 0.002)
 

 
BMI
1
 
0.011
  (0.010,
 0.012)
  <0.0001
  0.009
  (0.008,
 0.010)
  <0.0001
 
BMI
 group
 

   
 
<0.0001
 

   
 
<0.0001
 
Below
 18.5
  Reference
 

   
 
Reference
 

 

 
18.5-­‐-­‐24.9
  0.090
  (0.052,0.127)
 

 
0.087
  (0.043,
 0.132)
 

 
25.0-­‐-­‐29.9
  0.137
  (0.099,0.175)
 

 
0.111
  (0.066,
 0.156)
 

 
30.0
 and
 above
  0.220
  (0.182,0.259)
 

 
0.193
  (0.148,
 0.238)
 

 
Education
 

   
 
<0.01
 

   
 
0.72
 
≤
 High
 school
 
 
Reference
 

   
 
Reference
 

   
 
Some
 college
 
-­‐0.004
  (-­‐0.029,
 0.020)
 

 
-­‐0.013
  (-­‐0.041,
 0.014)
 

 
≥
 Bachelor’s
 degree
 
 
-­‐0.029
  (-­‐0.052,
 -­‐0.006)
   
  -­‐0.016
  (-­‐0.042,
 0.010)
   
 
Smoking
 history
 

   
 
0.01
 

   
 
<0.0001
 
Never
 smoked
 
Reference
 

   
 
Reference
 

   
 
Former
 
 
0.053
  (-­‐0.003,
 0.019)
 

 
0.025
  (0.013,
 0.037)
 

 
Current
 
 
0.008
  (0.015,
 0.090)
 

 
0.040
  (-­‐0.002,
 0.082)
 

 
Past
 hormone
 therapy
 
-­‐0.008
  (-­‐0.020,
 0.003)
  0.17
  0.019
  (0.006,
 0.032)
  <0.01
 
1. BMD,
 bone
 mineral
 density;
 BMI,
 body
 mass
 index.
 
2. Total
 hip
 BMD
 was
 centered
 on
 the
 mean
 (0.937);
 n=348.
 
3. Lumbar
 spine
 BMD
 was
 centered
 on
 the
 mean
 (0.898);
 n=346.
 

 

  15
 
Univariate
 Association
 between
 CIMT
 and
 Clinical
 Variables
 and
 BMD
 
Table
 3
 shows
 the
 CIMT
 associations
 with
 clinical
 variables
 and
 BMD
 from
 a
 
linear
 mixed
 effects
 models.
 BMD
 of
 the
 total
 hip
 and
 spine
 were
 divided
 by
 their
 
respective
 SDs;
 the
 regression
 coefficients
 associated
 with
 BMD
 are
 therefore
 
expressed
 per
 SD.
 Cross-­‐sectionally,
 the
 mean
 baseline
 CIMT
 significantly
 increased
 
with
 age
 (P<0.0001).
 The
 mean
 baseline
 CIMT
 marginally
 significantly
 differed
 
among
 ethnic
 groups
 (P=0.06).
 Asian
 participants
 had
 a
 significantly
 lower
 mean
 
baseline
 CIMT
 than
 White
 participants
 (P=0.01).
 Mean
 lumbar
 spine
 BMD
 was
 
positively
 significantly
 associated
 with
 CIMT
 (P<0.01);
 total
 hip
 BMD
 was
 not
 
associated
 with
 baseline
 CIMT.
 
Longitudinally,
 total
 hip
 BMD
 was
 significantly
 inversely
 associated
 with
 CIMT
 
progression
 (P=0.01).
 The
 mean
 CIMT
 rate
 was
 0.002
 mm/year
 (95%
 CI:
 -­‐0.020,
 -­‐
0.003)
 lower
 per
 0.137g/cm
2

 (1
 SD)
 total
 hip
 BMD.
 Lumbar
 spine
 BMD
 was
 also
 
significantly
 inversely
 associated
 with
 CIMT
 progression
 (P=0.03).
 The
 mean
 CIMT
 
rate
 was
 0.001
 mm/year
 (95%
 CI:
 -­‐0.016,
 -­‐0.001)
 lower
 per
 0.122g/cm
2

 (1
 SD)
 
mean
 lumbar
 spine
 BMD.
 

 

  16
 
Table
 3.
 Univariate
 Mixed
 Effects
 Associations
 between
 CIMT
 and
 Clinical
 Variables
 and
 BMD
1

 
 

 
Cross-­‐sectional
 effect
 on
 CIMT
 baseline
  Longitudinal
 effect
 on
 CIMT
 rate
 
Variable
  Coefficient
  95%CI
  P
  Coefficient
  95%CI
  P
 
Age
 group,
 years
 

   
 
<0.01

 

   
   
 
less
 than
 55
  Reference
 

   
 
Reference
 

 
0.21
 
55-­‐59
  0.024
  (-­‐0.005,
 0.053 )
 

 
0.001
  (-­‐0.003,
 0.003)
 

 
60-­‐64
  0.059
  (0.030,
 0.087)
 

 
0.001
  (-­‐0.002,
 0.004)
 

 
65-­‐69
  0.076
  (0.045,
 0.107)
 

 
0.003
  (-­‐0.001,
 0.006)
 

 
70+
  0.148
  (0.113,
 0.184)
 

 
-­‐0.002
  (-­‐0.006,
 0.002)
 

 
Trend
 

   
 
<0.01
2
 

   
 
0.66
2
 
Ethnicity
 

   
 
0.06
 

   
 
0.70
 
White
 (non-­‐Hispanic)
 
Reference
 

   
 
Reference
 

   
 
Black
 (non-­‐Hispanic)
 
0.021
  (-­‐0.023,
 0.066)
 

 
0.001
  (-­‐0.003,
 0.006)
 

 
Hispanic
 
-­‐0.006
  (-­‐0.035,
 0.024)
 

 
-­‐0.001
  (-­‐0.004,
 0.002)
 

 
Asian
 
-­‐0.044
  (-­‐0.078,
 -­‐0.009)
 

 
-­‐0.001
  (-­‐0.005,
 0.002)
 

 
Other
 
-­‐0.036
  (-­‐0.092,
 0.020)
 

 
-­‐0.003
  (-­‐0.008,
 0.003)
 

 
BMI
 
0.001
  (-­‐0.001,
 0.003)
  0.17
  <0.001
  (-­‐0.001,
 0.001)
  0.77
 
BMI
 categories
 

   
  0.17
   
   
  0.77
 
Below
 18.5
  Reference
 

   
   
   
   
 
18.5-­‐-­‐24.9
  0.062
  (-­‐0.027,
 0.151)
 

 
0.001
  (-­‐0.008,
 0.009)
 

 
25.0-­‐-­‐29.9
  0.081
  (-­‐0.009,
 0.171)
 

 
-­‐0.001
  (-­‐0.009,
 0.008)
 

 
30.0
 and
 above
  0.076
  (-­‐0.015,
 0.166)
 

 
-­‐0.001
  (-­‐0.009,
 0.008)
 

 
Education
 

   
 
0.28
 

   
 
0.72
 
High
 school
 or
 below
 
Reference
 

   
 
Reference
 

   
 
Some
 college
 
0.010
  (-­‐0.039,
 0.058)
 

 
-­‐0.002
  (-­‐0.007,
 0.003)
 

  Bachelor’s
 degree
 or
 
above
  -­‐0.009
  (-­‐0.056,
 0.038)
   
  -­‐0.002
  (-­‐0.007,
 0.003)
   
 
Smoking
 history
 

   
 
0.62
 

   
 
0.68
 
Never
 smoked
 
Reference
 

   
 
Reference
 

   
 
Former
 
0.009
  (-­‐0.013,
 0.031)
 

 
0.001
  (-­‐0.006,
 0.008)
 

 
Current
 
-­‐0.016
  (-­‐0.087,
 0.055)
 

 
0.001
  (-­‐0.001,
 0.003)
 

  Past
 use
 of
 hormone
 
therapy
  0.014
  (-­‐0.009,
 0.037)
  0.24
  0.001
  (-­‐0.001,
 0.003)
  0.36
 
Total
 hip
 BMD
3
 
0.070
  (-­‐0.017,0.157)
  0.11
  -­‐0.012
  (-­‐0.020,
 -­‐0.003)
  0.01
 
Lumbar
 Spine
 BMD
3
 
0.130
  (0.054,
 0.206)
  <0.01
  -­‐0.008
  (-­‐0.016,
 -­‐0.001)
  0.03
 
1. BMD,
 bone
 mineral
 density;
 BMI,
 body
 mass
 index.
 
2. Trend
 test
 for
 association
 between
 age
 groups
 and
 CIMT.
 
3. The
 range
 of
 total
 hip
 BMD
 is
 (0.720,
 1.639),
 mean
 (SD)
 is
 0.937
 (0.137).
 
 
The
 range
 of
 lumbar
 spine
 BMD
 is
 (0.603,
 1.399),
 mean
 (SD)
 is
 0.898
 (0.122).
 
 

   
 

  17
 
Multivariable
 Associations
 between
 Total
 Hip
 BMD
 and
 CIMT
 
 
Table
 4
 shows
 the
 multivariable
 mixed-­‐effects
 model
 of
 CIMT
 and
 total
 hip
 BMD,
 
adjusting
 for
 age.
 Age
 was
 significantly
 associated
 with
 baseline
 CIMT
 and
 total
 hip
 
BMD
 (P<0.0001).
 Cross-­‐sectionally,
 after
 adjusting
 for
 age,
 the
 regression
 parameter
 
of
 adjusted
 total
 hip
 BMD
 changed
 36%
 from
 the
 unadjusted
 total
 hip
 BMD
 
parameter
 (age
 treated
 as
 a
 continuous
 variable).
 Age
 therefore
 confounded
 the
 
cross-­‐sectional
 association
 between
 baseline
 total
 hip
 BMD
 and
 CIMT.
 Total
 hip
 BMD
 
was
 significantly
 positively
 associated
 with
 CIMT,
 adjusting
 for
 age
 group
 (P<0.01).
 
Mean
 baseline
 CIMT
 increased
 0.015
 mm
 (95%
 CI:
 0.031,
 0.188)
 per
 0.137
 g/cm
2

 of
 
total
 hip
 BMD.
 
 
The
 mean
 total
 hip
 BMD
 was
 significantly
 inversely
 associated
 with
 CIMT
 
progression
 (P<0.01).
 The
 mean
 CIMT
 rate
 decreased
 0.002
 mm/year
 (95%
 CI:
 -­‐
0.021,
 -­‐0.003)
 with
 per
 0.137g/cm
2
 
(1SD)
 of
 total
 hip
 BMD.
 
 

   
 

  18
 
Table
 4.
 Mixed
 Effects
 Model
 of
 CIMT
 and
 Total
 Hip
 BMD
 with
 Age
 Adjustment
 
Total
 hip
 BMD
 model
 
Coefficient
 
95%CI
  P
 

   
   
   
 
Intercept
  0.749
  (0.732,
 0.765)
  <0.01
 
Total
 hip
 BMD
1
 
0.109
  (0.031,
 0.188)
  <0.01
 
Year
2,4
 
0.006
  (0.004,
 0.007)
  <0.01
 
Total
 hip
 BMD
 *
 Year
1
 
-­‐0.012
  (-­‐0.021,
 -­‐0.003)
  <0.01
 
Age
3
 
0.034
  (0.027,
 0.042)
  <0.01
 
Age
 group
 *Year
  <0.001
  (-­‐0.001,
 0.001)
  0.97
 

   
   
   
 
1. Total
 hip
 BMD
 coefficient
 represent
 cross-­‐sectional
 (baseline)
 association
 with
 CIMT;
 Total
 
hip
 BMD*
 Year
 represents
 longitudinal
 association
 with
 CIMT
 rate.
 
2. Unit
 of
 year
 was
 per
 year.
 
3. Age
 modeled
 as
 a
 continuous
 variable.
 
4. Year
 variable
 equal
 year
 since
 randomization.
 

   
 

  19
 
Effect
 Modification
 by
 BMI
 and
 Smoking
 
Additional
 interaction
 term
 of
 BMD*BMI
 and
 BMD*smoking
 evaluated
 to
 test
 
whether
 the
 cross-­‐sectional
 association
 of
 BMD
 with
 baseline
 CIMT
 differed
 by
 BMI
 
and
 smoking.
 Similarly,
 interaction
 terms
 of
 BMD*BMI*Year
 and
 BMD*Smoking*Year
 
tested
 if
 the
 associations
 of
 BMD
 with
 CIMT
 rate
 differed
 by
 BMI
 and
 smoking.
 None
 
of
 these
 interaction
 terms
 were
 statistically
 significant
 (all
 P>0.05).
 Therefore,
 the
 
association
 between
 BMD
 (total
 hip
 BMD
 and
 lumbar
 spine
 BMD)
 and
 CIMT
 did
 not
 
significantly
 differ
 among
 BMI
 categories
 (data
 not
 shown).
 
Similarly,
 the
 association
 between
 BMD
 (total
 hip
 and
 lumbar
 spine
 BMD)
 and
 
CIMT
 did
 not
 significantly
 differ
 among
 
 smoking
 categories
 (data
 not
 shown).
 

 

   
 

  20
 
DISCUSSION
 
In
 the
 randomized,
 double-­‐blinded,
 placebo-­‐controlled
 WISH
 trial,
 our
 analyses
 
showed
 that
 CIMT
 progression
 was
 significantly
 negatively
 associated
 with
 BMD
 of
 
the
 total
 hip
 and
 lumbar
 spine
 in
 postmenopausal
 women.
 Epidemiology
 and
 clinical
 
trial
 evidence
 support
 the
 use
 of
 CIMT
 as
 a
 validated
 and
 accepted
 marker
 for
 
generalized
 atherosclerosis
 burden
 and
 vascular
 disease
 risk
 [14].
 Thus,
 
postmenopausal
 women
 with
 greater
 BMD
 loss
 measured
 at
 the
 hip
 and
 lumbar
 
spine
 were
 at
 increased
 risk
 related
 to
 not
 only
 osteoporosis
 but
 also
 
atherosclerosis.
 
Estrogen-­‐deficient
 postmenopausal
 women
 are
 at
 greater
 risk
 for
 
atherosclerosis
 and
 osteoporosis.
 These
 are
 not
 merely
 age-­‐related
 processes,
 but
 
are
 linked
 by
 many
 common
 factors.
 
 Age,
 ethnicity,
 BMI,
 education,
 smoking
 history
 
and
 past
 use
 of
 hormone
 therapy
 are
 considered
 as
 common
 risk
 factors
 for
 
osteoporosis
 and
 subclinical
 atherosclerosis
 in
 postmenopausal
 women
 [5,13].
 
Osteoporosis
 and
 atherosclerosis
 are
 associated
 with
 significant
 morbidity
 and
 
mortality;
 thus
 analyzing
 the
 association
 between
 these
 two
 pathological
 entities
 
has
 important
 public
 health
 impact.
 
 
Associations
 of
 BMD
 with
 Clinical
 Variables
 
WISH
 data
 confirmed
 many
 of
 the
 known
 BMD
 associations.
 BMD
 decreased
 
with
 age
 and
 significantly
 differed
 among
 racial
 groups,
 with
 Asian
 participants
 
having
 significantly
 lower
 BMD
 than
 White
 participants.
 Black
 participants
 had
 

  21
 
significantly
 higher
 total
 hip
 and
 lumbar
 spine
 BMD
 than
 White
 participants
 
consistent
 with
 other
 data
 reporting
 such
 a
 difference
 [16].
 While
 smoking
 is
 
considered
 an
 established
 risk
 factor
 for
 osteoporosis
 [17],
 BMD
 was
 significantly
 
higher
 among
 the
 few
 current
 smokers
 compared
 to
 non-­‐smokers
 in
 the
 WISH
 trial.
 
This
 finding
 is
 contrary
 to
 previous
 studies
 and
 may
 be
 due
 to
 the
 very
 sample
 size
 
of
 current
 smokers
 (n=8).
 A
 positive
 association
 between
 past
 use
 of
 hormone
 
therapy
 with
 lumbar
 spine
 BMD
 suggests
 a
 protective
 effect
 of
 HT
 on
 lumbar
 spine
 
osteoporosis,
 which
 is
 consistent
 with
 previous
 research
 [13].
 
Association
 of
 CIMT
 with
 Clinical
 Variables
 
After
 analyzing
 univariate
 associations
 between
 CIMT
 and
 clinical
 variables,
 we
 
found
 that
 baseline
 CIMT
 was
 significantly
 associated
 with
 age,
 which
 is
 consistent
 
with
 other
 study
 [22].
 Baseline
 CIMT
 significantly
 differed
 across
 ethnic
 groups;
 the
 
average
 baseline
 CIMT
 in
 Asians
 was
 less
 than
 half
 that
 of
 other
 racial
 groups.
 While
 
we
 did
 not
 find
 a
 difference
 in
 CIMT
 progression
 rates
 across
 racial
 groups,
 the
 
directions
 of
 race/ethnic
 group
 differences
 in
 CIMT
 progression
 rates
 were
 in
 the
 
same
 direction
 as
 seen
 in
 the
 cross-­‐sectional
 analysis.
 
 
Association
 of
 CIMT
 Rate
 and
 Total
 Hip
 BMD
 
Although
 the
 cross-­‐sectional
 association
 between
 CIMT
 and
 BMD
 was
 opposite
 
to
 that
 reported
 in
 previous
 studies
 [18],
 the
 longitudinally-­‐analyzed
 CIMT
 rate
 was
 
negatively
 associated
 with
 BMD
 (in
 both
 total
 hip
 and
 lumbar
 spine)
 consistent
 with
 
the
 known
 positive
 association
 between
 osteoporosis
 and
 atherosclerosis.
 The
 mean
 

  22
 
CIMT
 rate
 was
 0.002
 mm/year
 (95%
 CI:
 -­‐0.020,
 -­‐0.003)
 lower
 per
 0.137g/cm
2

 total
 
hip
 BMD.
 The
 mean
 CIMT
 rate
 was
 0.001
 mm/year
 (95%
 CI:
 -­‐0.016,
 -­‐0.001)
 lower
 
per
 0.122g/cm
2

 mean
 lumbar
 spine
 BMD.
 This
 result
 is
 consistent
 with
 and
 
importantly
 extends
 just
 one
 other
 longitudinal
 study
 that
 demonstrated
 that
 
vascular
 calcification
 was
 associated
 with
 increased
 bone
 loss
 in
 women
 during
 
menopause
 [1].
 
Our
 model
 ultimately
 adjusted
 for
 age
 as
 age
 confounded
 the
 cross-­‐sectional
 
association
 between
 baseline
 CIMT
 and
 total
 hip
 BMD.
 However,
 the
 longitudinal
 
association
 did
 not
 change
 with
 age
 adjustment.
 This
 indicated
 that
 osteoporosis
 
and
 atherosclerosis
 are
 not
 associated
 simply
 due
 to
 a
 common
 age-­‐related
 process,
 
but
 that
 some
 similar
 pathophysiological
 mechanisms
 affect
 both
 processes.
 
Biological
 Link
 and
 Possible
 Pathophysiological
 Mechanisms
 
Vascular
 calcification
 and
 bone
 mineralization
 show
 similarities
 [1].
 Calcifying
 
vascular
 cells
 appear
 in
 many
 ways
 similar
 to
 osteoblasts
 [20]
 and
 specific
 factors
 
and
 proteins
 crucial
 to
 bone
 formation
 are
 also
 associated
 with
 atherosclerosis
 
 [1].
 
It
 is
 now
 recognized
 that
 calcification
 of
 arterial
 tissue
 is
 not
 merely
 a
 passive
 
process
 of
 calcium
 phosphate
 precipitation
 or
 adsorption
 in
 end-­‐stage
 
atherosclerosis,
 but
 instead
 is
 a
 highly
 organized
 process
 that
 is
 regulated
 by
 
mechanisms
 similar
 to
 those
 involved
 in
 bone
 mineralization
 [23,24].
 
 
Epidemiological
 data
 suggest
 that
 estrogen
 deficiency
 is
 a
 risk
 factor
 for
 both
 
cardiovascular
 disease
 and
 osteoporosis
 [19].
 Arteries
 and
 bone
 are
 major
 tissue
 

  23
 
targets
 for
 estrogen.
 Postmenopausal
 women
 who
 are
 estrogen
 deficient
 may
 
develop
 aortic
 artery
 calcification
 and
 bone
 loss
 [1].
 
 
Aortic
 calcification
 influences
 blood
 flow
 to
 distal
 regions
 [21].
 Impaired
 blood
 
flow
 to
 the
 lower
 extremity
 due
 to
 or
 reflected
 by
 severe
 atherosclerosis
 in
 the
 
lumbar
 aorta
 may,
 at
 least
 to
 some
 extent,
 contribute
 to
 the
 complex
 multi-­‐factorial
 
pathogenesis
 of
 osteoporosis
 in
 the
 hip
 [21].
 
There
 were
 several
 strengths
 and
 unique
 features
 of
 our
 study.
 Most
 
importantly,
 this
 is
 the
 first
 longitudinal
 study
 to
 demonstrate
 the
 inverse
 
association
 between
 higher
 BMD
 and
 lower
 progression
 of
 atherosclerosis
 in
 
healthy
 postmenopausal
 women.
 The
 WISH
 participants
 were
 in
 a
 randomized
 
controlled
 trial
 of
 postmenopausal
 women
 aged
 45-­‐92
 years.
 The
 prevalence
 of
 
prior
 hormone
 therapy
 was
 very
 high
 (70%).
 Both
 carotid
 artery
 ultrasound
 and
 
bone
 DXA
 were
 performed
 under
 strict
 quality
 control
 standards
 for
 uniform
 image
 
acquisition
 and
 minimization
 of
 measurement
 error.
 We
 evaluated
 and
 found
 
consistent
 associations
 of
 risk
 factors
 in
 both
 the
 total
 hip
 and
 lumbar
 spine
 BMD.
 
The
 sample
 size
 that
 contributed
 to
 estimation
 and
 testing
 of
 the
 longitudinal
 effect
 
was
 large
 (n=325)
 and
 77%
 of
 all
 the
 participants
 contributed
 more
 than
 6
 
measurements
 of
 CIMT;
 this
 provides
 sample
 size
 and
 power
 to
 detect
 significant
 
associations
 without
 selection
 bias.
 We
 used
 mixed
 effects
 models
 to
 analyze
 these
 
data;
 this
 method
 allowed
 us
 to
 flexibly
 deal
 with
 the
 longitudinal
 data
 involving
 
repeated
 measures,
 missing
 measures
 and
 unequally
 spaced
 measures.
 We
 also
 

  24
 
analyzed
 the
 association
 between
 CIMT
 rate
 and
 BMD
 stratified
 by
 BMI
 and
 smoking
 
categories;
 we
 failed
 to
 find
 any
 significant
 effect
 modification.
 
In
 conclusion,
 our
 results
 indicated
 that
 the
 CIMT
 progression
 rate
 is
 negatively
 
associated
 with
 total
 hip
 and
 lumbar
 spine
 BMD.
 Low
 BMD
 in
 the
 total
 hip
 and
 
lumbar
 spine
 may
 be
 treated
 as
 a
 marker
 of
 both
 osteoporosis
 and
 atherosclerosis
 
progression
 for
 healthy
 postmenopausal
 women.
 Postmenopausal
 women
 who
 are
 
at
 risk
 for
 osteoporosis
 should
 also
 be
 concerned
 about
 the
 risk
 for
 atherosclerosis.
 

   
 

  25
 
REFERENCES
 
[1]
 A.Elisabeth
 Hak,
 Huibert
 A.P.
 Pols,
 Albert
 M.
 van
 Hemert,
 Progression
 of
 Aortic
 
calcification
  is
  associated
  with
  metacarpal
  bone
  loss
  during
  menopause—A
 
population-­‐based
 longitudinal
 study.Arterioscler
 Thromb
 Vasc
 Biol.
 2000;20:1926-­‐
31.
 
[2]
 Aldons
 J.
 Lusis.
 Atherosclerosis.
 Nature.Sep
 14,
 2000;407
 (6801):233-­‐241.
 
 
[3]
 Retrieve
 from
 WebMed,
 Osteoporosis
 and
 menopause.
 
 
http://www.webmd.com/menopause/osteoporosis-­‐menopause
 
[4]Retrieve
 from
 international
 osteoporosis
 foundation,
 Osteoporosis.
 
http://www.iofbonehealth.org/epidemiology
 
[5]
 Howard
 N.
 Hodis,
 Wendy
 J.
 Mack,
 Isoflavone
 Soy
 protein
 supplementation
 and
 
atherosclerosis
  progression
  in
  healthy
  postmenopausal
  women-­‐
  A
  randomized
 
controlled
 trial.
 Stroke.2011;42:3168-­‐3175.
 
[6]
 Ihsane
 Hamouchi,
 Fadoua
 Allali,
 Hamza
 Khazzani.
 Low
 bone
 mineral
 density
 is
 
related
 to
 atherosclerosis
 in
 postmenopausal
 Moroccan
 women.
 BMC
 Public
 Health.
 
2009;9:388.
 
[7]
 A.
 Luckish,
 R.
 Cernes,
 M.
 Boaz,
 D.
 Gavish,
 Z.
 Matas,
 A.
 Fux,
 M.
 Shargorodsky.
 Effect
 
of
  long-­‐term
  treatment
  with
  risedronate
  on
  arterial
  compliance
  in
  osteoporotic
 
patients
 with
 cardiovascular
 risk
 factors.
 Bone.
 2008;43:279-­‐283.
 
[8]
 Chambless
 LE,
 Folsom
 AR,
 Clegg
 LX,
 Sharrett
 AR,
 Shahar
 E,
 Nieto
 FJ,
 Rosamond
 
WD,
 Evans
 G.
 Carotid
 Wall
 Thickness
 is
 Predictive
 of
 Incident
 Clinical
 Stroke:
 The
 

  26
 
Atherosclerosis
 Risk
 in
 Communities
 (ARIC)
 Study.
 
[9]
 Small
 RE.
 Uses
 and
 Limitations
 of
 Bone
 Mineral
 Density
 Measurements
 in
 the
 
Management
 of
 Osteoporosis.
 MedGenMed.
 2005;7:3.
 
[10]
  Uyama
  O,
  Yoshimoto
  Y,
  Yamamoto
  Y,
  Kawai
  A.
  Bone
  changes
  and
  carotid
 
atherosclerosis
 in
 postmenopausal
 women.
 Stroke.
 1997;28:1730-­‐1732.
 
[11]
 Bots
 ML,
 Evans
 GW,
 Riley
 W,
 Meijer
 R,
 McBride
 KH,
 Paskett
 ED,
 Helmond
 FA,
 
Grobbee
 DE.
 The
 Osteoporosis
 Prevention
 and
 Arterial
 effects
 of
 tiboLone
 (OPAL)
 
study:
 design
 and
 baseline
 characteristics.
 Control
 Clin
 Trials.
 2003;24,752-­‐75.
 
[12]
 Hodis
 HN,
 Mack
 WJ,
 Lobo
 RA,
 Shoupe
 D,
 Sevanian
 A,
 Mahrer
 PR,
 et
 al.
 Estrogen
 
in
 the
 prevention
 of
 atherosclerosis:
 a
 randomized,
 double-­‐blind,
 placebo-­‐controlled
 
trial.
 Ann
 Intern
 Med.
 2001;
 135:939-­‐953.
 
[13]
 Karim
 R,
 Dell
 RM,
 Greene
 DF,
 Mack
 WJ,
 Gallagher
 JC,
 Hodis
 HN.
 Hip
 fracture
 in
 
postmenopausal
  women
  after
  cessation
  of
  hormone
  therapy:
  results
  from
  a
 
prospective
  study
  in
  a
  large
  health
  management
  organization.
  Mnopause.
 
2011;18:1172-­‐7.
 
[14]
 De
 Groot
 E,
 van
 Leuven
 SI,
 Duivenvoorden
 R,
 Meuwese
 MC,
 Measurement
 of
 
carotid
  intima–media
  thickness
  to
  assess
  progression
  and
  regression
  of
 
atherosclerosis.
 Nat
 Clin
 Pract
 Cardiovasc
 Med.
 2008;
 5:280-­‐8.
 
[15]
 Sun
 J1,
 Zhang
 C,
 Xu
 L,
 Yang
 M,
 Yang
 H.
 The
 transforming
 growth
 factor-­‐β1
 (TGF-­‐
β1)
 gene
 polymorphisms
 (TGF-­‐β1
 T869C
 and
 TGF-­‐β1
 T29C)
 and
 susceptibility
 to
 
postmenopausal
 osteoporosis:
 a
 meta-­‐analysis.
 Medicine
 (Baltimore).
 2015;94:e461.
 

  27
 
[16]
 Retrieved
 from
 NIH
 osteoporosis
 and
 Africa
 American
 women,
 osteoporosis
 
and
 African
 American
 Women
 
http://www.niams.nih.gov/health_info/bone/osteoporosis/background/
 
[17]
 Iqbal
 J,
 Sun
 L,
 Cao
 J,
 Yuen
 T,
 Lu
 P,
 Bab
 I,
 et
 al.
 Smoke
 carcinogens
 cause
 bone
 loss
 
through
 the
 aryl
 hydrocarbon
 receptor
 and
 induction
 of
 Cyp1
 enzymes.
 Proc
 Natl
 
Acad
 Sci
 U
 S
 A.
 2013;110:
 11115-­‐20.
 
[18]
  Barengolts
  EI,
  Berman
  M,
  Kukreja
  SC,
  Kouznetsova
  T,
  Lin
  C,
  Chomka
  EV.
 
Osteoporosis
  and
  coronary
  atherosclerosis
  in
  asymptomatic
  postmenopausal
 
women.
 Calcif
 Tissue
 Int.
 1998;62:209-­‐13.
 
[19]
 Tuomikoski
 P1,
 Mikkola
 TS.
 Postmenopausal
 hormone
 therapy
 and
 coronary
 
heart
 disease
 in
 early
 postmenopausal
 women.
 Ann
 Med.
 2014;46:1-­‐7.
 
[20]
 Watson
 KE,
 Boström
 K,
 Ravindranath
 R,
 Lam
 T,
 Norton
 B,
 Demer
 LL.
 TGF-­‐beta
 1
 
and
 25-­‐hydroxycholesterol
 stimulate
 osteoblast-­‐like
 vascular
 cells
 to
 calcify.
 J
 Clin
 
Invest.
 1994;93:2106-­‐13.
 
[21]Tanko
 LB,
 Bagger
 YZ,
 Christiansen
 C.
 Low
 bone
 mineral
 density
 in
 the
 hip
 as
 a
 
marker
 of
 advanced
 atherosclerosis
 in
 elderly
 women.
 Calcif
 Tissue
 Int.
 2003;73:15–
20.
 
[22]
 Nambi,
 V.,
 et
 al.
 Carotid
 intima-­‐media
 thickness
 and
 cardiovascular
 events.
 The
 
Lancet.
 379(9831):
 2028-­‐2030.
 
 
[23]
 Vattikuti
 R,
 Towler
 DA.
 Osteogenic
 regulation
 of
 vascular
 calcification:
 an
 early
 
perspective.
 Am
 J
 Physiol
 Endocrinol
 Metab.
 2004;286:E686–E696.
 

  28
 
[24]
 Doherty
 TM,
 Detrano
 RC.
 Coronary
 arterial
 calcification
 as
 an
 active
 process:
 a
 
new
 perspective
 on
 an
 old
 problem.
 Calcif
 Tissue
 Int.
 1994;54:224–230. 
Asset Metadata
Creator Li, Jiaonan (author) 
Core Title Bone mineral density is associated with carotid atherosclerosis in healthy postmenopausal women: a longitudinal analysis of randomized clinical trial data 
Contributor Electronically uploaded by the author (provenance) 
School Keck School of Medicine 
Degree Master of Science 
Degree Program Biostatistics 
Publication Date 08/27/2015 
Defense Date 08/26/2015 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag carotid atherosclerosis,lumbar spine BMD,OAI-PMH Harvest,postmenopausal,total hip BMD 
Format application/pdf (imt) 
Language English
Advisor Mack, Wendy (committee chair), Hodis, Howard (committee member), Karim, Roksana (committee member) 
Creator Email jiaonanl@usc.edu,lijiaonan27@gmail.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c40-170432 
Unique identifier UC11273401 
Identifier etd-LiJiaonan-3850.pdf (filename),usctheses-c40-170432 (legacy record id) 
Legacy Identifier etd-LiJiaonan-3850-0.pdf 
Dmrecord 170432 
Document Type Thesis 
Format application/pdf (imt) 
Rights Li, Jiaonan 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Background and purpose: Atherosclerosis and osteoporosis are major causes of morbidity and mortality in postmenopausal women. Our study aimed to analyze the association between progression of carotid artery intima-media thickness (CIMT) and bone mineral density (BMD), providing more evidence for the relation between osteoporosis and subclinical atherosclerosis in postmenopausal women. ❧ Methods: In this longitudinal analysis, 349 postmenopausal women were followed for 3 years, and had an average 6 CIMT measurements. BMD had an average 3 measurements using DEXA 
Tags
carotid atherosclerosis
lumbar spine BMD
postmenopausal
total hip BMD
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button